

The Role of **Bio-based** Additives in Achieving **Sustainability** in Asphalt Pavements

Magdalena Machura Business Development Manager, Germany

Hassan A. Tabatabaee, Ph.D. Global Technical Manager, Asphalt Solutions

© 2021 Cargill, Incorporated. All rights reserved.

Global Leader in Asphalt Chemistries

- Customer custom formulation services
- Compositional and analytical evaluation
- Advanced rheology and thermal analysis

155,000 employees	155 years of experience	Working in 70 countries	\$114,6 billion in annual revenue
	Our co	mmitments	
Safe We relentlessly work to ir people. Reduction in injur worked over 15 years.	nprove the safety of our ies per 200,000 hours	4.58	
Responsible We strive to strengthen	\$115 million Total charitable	3.2 million	10 million 2030 goal

Sustainable

- Agriculture is how we will protect the planet and our shared future.
- Climate change: Reducing supply chain emissions per ton of product 30% by 2030, and absolute operational emissions 10% by 2025
- · Water resources: Achieving sustainable water management in all priority watersheds by 2030
- Land use: Eliminating deforestation in our supply chains by 2030

Cargill Bioindustrial manufacturing & research sites

- Review of two sustainable technologies:
 - -Rejuvenators (Recycling Agents)
 - -Chemical Warm Mix Additive
- Implementation of Additives in Asphalt Design
- Review of Selected Field Studies

Sustainability: Rejuvenators

Imagine a world that increased RAP usage to 25%. This would create*:

* Industry estimation based on NAPA literature

Defining Rejuvenation:

© 2021 Cargill, Incorporated. All rights reserved.

Link to video: <u>https://youtu.be/uwfYjy4PHDU</u>

Definitions: Rejuvenators, An Engineered Solution

"Rejuvenation" is an inaccurate, but popular term.

Rejuvenators do not undo oxidative aging!

A good rejuvenator reverses the impact of aging on asphalt, reactivating the asphalt, to restore performance, and durability.

A good rejuvenator is an oil additive that reverses the impact of aging:

- Restores cracking resistance, maintains rutting performance
- Improves workability, compaction, and appearance
- Improves aging susceptibility of the pavement
- Provides predictable and reliable results

How are Rejuvenators and Warm Mix Additives Used?

Typically, 0.3-3% wt. of the binder or 0.015-0.15% wt. of the mix, added via:

For both RA and WMA:

- In-line into virgin binder using additive pump
- Pre-blended into virgin binder (mostly for WMA)

Only for RA:

- Treatment of RAP (at collar or during processing)
- Injection into pugmill or mixing drum

Rejuvenators: Improved Compaction and workability

- Rejuvenation significantly improved the Compactability, even after a 20% increase in RAP content.
 - A large improvement in compaction temperatures achieved
 - No over-compaction at hot mix temperatures.

Rejuvenators Impact

• Recycling agents have been used to modify performance attributes in a mix.

Mix Parameter	Expected RA Impact
Cracking Resistance	Improve
High Temperature Stiffness	Decrease
Moisture Resistance	Typically, None

Recycling Agent Categorization - ASTM D4552-20

Assesses basic safety, thermal stability, storage stability, and compatibility property for use in asphalt plants.

			Most	Bi	io-oils	Most	Petro.	oils								
	ASTM		RA 0		RA 1		RA 5		RA 25		RA 75		RA 250		RA 500	
Test	Method	М	n M	ax	Min	Max										
Viscosity • 60 °C [140 °F], mm²/s	D2170	1) 4	9	50	175	176	900	901	4500	4501	12500	12501	37500	37501	60000
Flash Point, COC, °C [°F]	D92	219 [425] .	•	219 [425]											
Saturates, wt, % ^A	D2007		3	0		30		30		30		30		30		30
Tests on Residue from RTFO 163 °C [325 °F]	D2872			į												
Viscosity Ratios				3		3		3		3		3		3		3
Wt Change, ±, %	"			1		4		4		3		3		3		3
Specific Gravity at 25 °C [77 °F]	D70 or D1298	0.9	00 1.1	00	0.900	1.100	0.900	1.100	0.900	1.100	0.900	1.100	0.900	1.100	0.900	1.100

 $ViscosityRatio = \frac{Viscosity of Residue from RTFO Test at 60°C [140°F]}{Original Wiscosity at 60°C [140°F]}$

© 2021 Cargill, Incorporated. All rights reserved.

Original Viscosity at 60°C [140°F]

Initial RA Dosage Determination

RAP samples are extracted, graded and rheologically fingerprinted for initial dosage determination.

Field Evaluation Projects

NCAT: Warm Climate

- 30% RAP (24% ABR); PG64-22 Binder + Cargill Anova[®] Warm Mix Additive
- 45% RAP (38% ABR); PG64-22 Binder + Cargill Anova[®] Rejuvenator
- Aggregates and RAP were shipped in from Virginia for the project

MNROAD: Cold Climate

- 25% RAP (20% ABR); PG58-28 Binder
- 45% RAP (31% ABR); PG5828 Binder + Cargill Anova[®] Rejuvenator
- Aggregates and RAP were supplied locally in Minnesota for the project

Туре	Name	Description
Chemical Warm Mix	Cargill Anova® 1501/1503	A bio-based non-hazardous liquid warm mix additive, design for impact at low dosage without changing the bitumen grade
Recycling Agent	Cargill Anova® 1815/1817	An engineered bio-based oil, based chemical modification of vegetable oil for bitumen compatibility and oxidative stability

NCAT High RAP and WMA Project

- Designs were done using BMD system under consideration by VADOT at the time (IDEAL vs. APA)
- Rejuvenation of the high RAP mix achieved comparable passing performance compared to the WMA mix.
- Both the RA and WMA mix outperform the high-RAP control mix.

© 2021 Cargill, Incorporated. All rights reserved.

NCAT Proven performance. With Cargill Anova[®] Rejuvenator and Cargill Anova[®] Warm Mix Additive

To demonstrate performance Cargill built a test section on the NCAT track using the typical 30% RAP mix with Cargill Anova[®] WMA, and 45% RAP with Cargill Anova[®] Rejuvenator.

After 17 million loadings, zero cracks appeared in the test section

* Data provided and measured by NCAT using plant produced mix.

Example: Netherlands 70% RAP Asphalt Mix

- Beam fatigue test showed that the **rejuvenator** significantly improved the fatigue resistance.
 - The rejuvenated mix easily passed the rutting requirement
 - The mix using soft bitumen failed the rutting test.

Rejuvenated 70% RAP (60% RA Binder)

Amsterdam Airport (Schiphol) 60%RAP Runway Pavement

- Increased RAP from 0% to 60% using PmB and Anova[™] rejuvenator.
- Design process consisted of cracking and rutting performance tests.
- Paved 225,000 m² using 300,000 tons.

Heijmans paving the Polderbaan with Cargill's Anova® Rejuvenator. © 2021 Heijmans

The products used needed to perform: the Polderbaan needed to be repaved with as little impact as possible on Schiphol's daily operations. © 2021 Heijmans

Overview of the paving project at the Polderbaan, with Cargill's Anova^ Rejuvenator. 2021 Heijmans

Sustainability: Warm Mix Additive

Lower costs and a safer; work environment. Reliably achieve density and improve workability at lower temperatures, <u>reducing emissions and odor</u>.

- Increased usage due to ease of implementation and lack of impact on standard bitumen grade.
- Functions by modification of the bitumen internal friction.
- Improve bitumen ability to coat the aggregates, often also making such additive "adhesion promotors"

Summary and Final Remarks

- Chemical Warm Mix additives and Rejuvenating Recycling Agents are great options to improve sustainability, economy, and performance of asphalt mix.
- Significant real-world experience exists for use and implementation of both types of technologies over the past decade.
 - Cargill is a leader in development and implementation of such sustainable additives, used in millions of tons asphalt mix every year.
- The NCAT and MNROAD studies demonstrated that even for high-performance and high-service pavements a framework can be used that provides **transparency and reliability for all stakeholders**:
 - Step 1: Recycling Agent Property Certification (e.g. through ASTM D4552-20) by supplier
 - Step 2: Initial dosage determination based on rheology, led by supplier
 - Step 3: Modified or Balanced Mix Design process and performance check, led by producers
 - Step 4: Robust quality management practices by all parties

Questions? Let us know!

www.cargill.com/asphaltsolutions anova-asphalt@cargill.com

Magdalena Machura

Senior Business Development Manager, Europe magdalena_machura@cargill.com

Hassan Tabatabaee, PhD

Global Technical Leader

hassan_tabatabaee@cargill.com

Helping the world thrive

© 2021 Cargill, Incorporated. All rights reserved.

MNROAD High RAP Rejuvenated Project

Designs were done using BMD system under consideration by MNDOT at the time (DCT vs. Hamburg)

Rejuvenation of the high RAP mix achieved comparable passing performance compared to the Low RAP control mix.

MNROAD Proven performance. With Cargill Anova® Rejuvenator.

To demonstrate performance against the typical 25% RAP mix, Cargill built a test section on the MNROAD track using 45% RAP and Cargill Anova[®] Rejuvenator.

After 2.5 million loadings, fully meeting performance expectations

- About 800,000 ESALs of loading per year since 2018.
- No cracking beyond expected reflective cracking from base course observed, equivalent to control.
- Sections showing good rutting performance. Cargill Anova sections have slightly lower permanent deformation.
- Smoothness has remained consistent since construction. This especially clear on the sufficiently long sections.

Step 4: Quality Management (All Parties)

Supplier:

- Product delivered with verifiable Certificate of Analysis
- Support producer with periodic material sampling and verification throughout season.

Producer:

Well-established process for Commercial Mixes

- Maintain appropriate frequency of RAP analysis (binder content and gradation control.)
- Maintain RAM processing protocols and consistency
- Mix performance verification as needed.

Owner/Agency (in development across country):

- Per agency specification
- Frequent Quality verification of mix composition/volumetrics
- Periodic simple/surrogate mix performance verification

ct: 763-577-3059	mobile: 763-203-2258; I	lassan_tabatabaee@c	argill.com		3/11/2020			
	Testing Procedures	Para	neter	Specification Method				
raction Method:	ASTM D2172, ASTM	D7906	High T	emp PG	AASHTO T3	15, ASTM D75	52	
overy Method:	Modified Abson Rec	overy, ASTM D1856		Low Te	emp PG	ASTM D717	TM D6521	
ding Method:	NCHRP Report 452, J	STM D7643		Inter. T	emp PG	ASTM D717	TM D6521	
ats expressed in this re	part are provided for the ti	stomer's injormation only	. The results are not cen	oyved.				
DAD				Law Te	Law Tamp DC			
RAP			High Temp PG	cow remp PG				
Sample Date	Plant	Binder Content*	83.3	S Grade	m Grade	ΔTc	Int. PG	10.2
Nov-19	RAP 1	4.81%	82.3	-23.8	-18.3	-5.5	27.9	
Now-19	PAP 2	2 01%	92.0	-25.0	-22.1	0.9	26.0	
Nov-19	RAP 4	4.55%	82.3	-21.9	-17.6	-4.3	27.4	
Feb-20	RAP 5	4 16%	81.8	-25.9	-17.9	-8.0	25.9	
Jul-18	RAP 6	4.86%	81.7	-22.7	-17.2	-5.5	26.6	
* Binder conten	t from solvent extraction	No correction factor o	applied.		10.5			
	Average	4.47%	81.8	-23.4	-16.9	-4.9	27.1	-16.9
	Min	3.91%	79.8	-25.9	-23.1	-8.0	25.9	-22.3
3/11/2020	Design RAP	From QC Report	81.8	-23.4	-16.9	-6.5	27.1	-16.9
RAS			High Tomo PG	Low To	mp PG			
Sample Date	Plant	Binder Content*	ingii remp ro	S Grade	m Grade	ΔTc	Int. PG	
Nov-19	RAS 1	21.24%	144.5	-30.0	12.9	-42.9	35.4	12.9
Nov-19	RAS 2	25.79%	150.2	-23.3	10.1	-33.4	35.5	10.1
Nov-19	RAS 3	24.73%	148.1	-29.4	17.2	-46.6	36.6	17.2
Nov-19	RAS 4	22.42%	144.1	-29.7	13.2	-42.9	38.8	13.2
Feb-20	RAS 5	26.41%	131.4	-31.3	12.7	-44.0	32.2	12.7
JUI-18	NA3 0	26.93%	133.5	-27.1	14.5	-41.7	35.5	
* Binder conten	from solvent extraction	. No correction factor o	pplied.					
	Average	24.59%	142.0	-28.5	13.4	-41.9	35.6	13.4
	Max	20.93%	121.4	-23.3	10.1	-33.4	38.8	17.2
3/11/2020	Design RAS	24.88%	146.7	-23.3	17.2	-40.5	36.6	17.2
		RAP - L	ow Tempe	rature F	G			
-12					-			
-14						Design	Value	
-18		k	A					
-20								
-22						Average	Value	
-24								
-26	1							
-20	~ ^		~	6	6			
	o'Y o'	?	0 ¹⁰ 0	<u>ر</u> م	~°			

Implementation: High RAP-Rejuvenated Design

